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This paper proposes a new weighted mean filter with a two-phase noise detector for image
denoising. Operations are carried out by the detection followed by filtering strategy. For
detection, a two-phase noise detector is presented to detect impulse noise (IN). In the first
phase, a rank-ordered difference of ROAD (ROD-ROAD) scheme is introduced for detecting
noise candidates. Different from most of the existing IN detectors, the proposed detector
identifies a pixel by a fuzzy rule that matches the stochastic nature of IN and greatly
improves the denoising performance. In the second phase, a local image statistic minimum
edge pixels difference (MEPD) is proposed to identify edge pixels from noise candidates.
This preserves edges from being wrongly detected as noise; therefore, improves the
detection accuracy. For filtering, we design a new weighted mean filter (WMF) that is more
suitable for IN to suppress the detected noisy pixels. Finally, an iterative denoising
algorithm is presented by combining the proposed two-phase noise detector and the
new WMF. The proposed method is accessible and easy to implement. Experimental results
show that the proposed method outperforms all the tested state-of-the-art denoising
methods with respect to the visual effects and quantitative measure results.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Digital images are frequently corrupted by IN due to a noisy camera sensor and faulty analog to digital conversion [20].
Images with noise can severely hamper the subsequent image processing such as segmentation [10], target detection [9], and
classification [21,24]. Therefore, removing noise from the corrupted images is absolutely obligatory and very important. The
goal of image denoising is removing noise as much as possible while preserving more image details.

Unlike Gaussian noise [35,42], the characteristic of IN is that, for images contaminated by IN, not all the pixel values are
changed, but only a portion of the pixels are replaced by noise. For simplicity, let xi;j and ci;j be the pixel intensities at ði; jÞth
position in the noisy and clean images respectively, and the pixel values be bounded by nmin and nmax (nmax > nmin). Then, the
IN model can be described as,
xi;j ¼
ci;j p ¼ 1� p0

ni;j p ¼ p0

�
ð1Þ
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where ni;j denotes the gray-value of noise, p0 is the noisy probability. Generally, there are two kinds of IN, namely, salt &
pepper noise (SPN) and random-valued impulse noise (RVIN). For SPN, the values of noisy pixels are chosen from nmin

and nmax. While for RVIN, the intensities of corrupted pixels can be changed into any value in ½nmin;nmax�. Compared with
SPN, RVIN is more difficult to be removed.

In order to suppress IN, various filters and techniques have been employed. The median (MED) filter [31], famous for its
simplicity, is one of the most common tools. However, the MED may remove some desirable details in images, especially
when the noise density is higher. Therefore, several MED extensions were then proposed to obtain better denoising perfor-
mance. Such as the weighted median (WM) filter [7], the center weighted median (CWM) filter [23], and the recursive
weighted median filter (RWMF) [4]. By assigning weights to emphasize the desirable pixels, these filters can achieve better
filtering performance. Nevertheless, they still degrade the image quality because they just process each pixel in the noisy
image without considering whether it is noise or not.

To solve the above problem, several filtering techniques integrated with noise detectors have been developed. The noise
detector, prior to filtering, is used to distinguish the corrupted and clean pixels. Then the detected noise pixels are filtered
while the clean ones remain unchanged. Many of these techniques are based on the median- or mean-type filters, examples
including the adaptive center-weighted median (ACWM) filter [11], Luo-iterative method [29], the directional weighted
median (DWM) filter [16], the adaptive switching median (ASWM) filter [3], the optimal direction median filter [5], the
two-pass switching rank-ordered arithmetic mean (TSRAM) filter [27], and the ROR non-local mean (ROR-NLM) [37].

In [18], based on the assumption that in natural images, the information pixels always have strong relationship with their
neighbors, Garnett et al. introduced a local statistic rank-ordered absolute difference (ROAD) to describe noisy pixels. Later,
Dong et al. [15] found that the detection accuracy can be improved by using a logarithmic function to amplify the differences
between the noisy and clean pixels. Hence, based on the ROAD, they proposed a new statistic ROLD and united it with edge-
preserving regularization (EPR) [30] for suppressing RVIN. Though the ROAD and ROLD can detect most of the IN, they may
be failed in edges. To overcome this shortcoming, generating a relative difference image, Yu et al. [38] proposed a rank-
ordered relative differences(RORD) to identify noise. Using a reference image, the RORD can preserve most edge pixels.
However, it excessively depends on the reference image which is not guaranteed to be entirely clean. Hence it still damages
some image details, especially when the noise density is high. In [28], combined with noise detector, the sparse representa-
tion technique was also extended for IN removal.

Recently, some techniques using the fuzzy rule for denoising have been developed [33]. The fuzzy rule is suitable for IN
due to its inherent uncertainty feature [43]. It has been verified that the fuzzy detectors or fuzzy filters could achieve good
performance in removing SPN even the noise density is as high as 90% [2]. Unfortunately, most of these fuzzy techniques are
proposed for SPN, few are suitable for RVIN.

In this paper, we propose a new image denoising algorithm to remove RVIN. The proposed algorithm is also based on the
‘‘detecting then filtering’’ trick. For detecting noise, a two-phase noise detector is proposed. In the first phase, a ROD-ROAD
scheme is presented to distinguish the noise-like and clean-like pixels. The absolute deviation to the median of clean-like
pixels in the sliding window is calculated, and a membership function is introduced to describe how noise-like a pixel is.
Since edge pixels are always wrongly detected as noise, in the second phase, we propose a statistic MEPD to identify the edge
pixels which are falsely detected as noise. This process is necessary to preserve edges from being damaged. For filtering, a
new weighted mean filter (WMF), which takes into account not only the information of image features but also the IN char-
acteristics, is designed to remove the detected noisy pixels. Our main contributions are summarized as follows,

� Introduce a new ROD-ROAD scheme to generate a cleaner reference variable for detecting noise.
� The possibility of a pixel corrupted by IN is described in a fuzzy rule by using a membership function.
� Propose a local statistic MEPD to select out edge pixels. To the best of our knowledge, this is the first time to identify edge

pixels from the noise candidates, which helps to preserve the image details.
� Integrating the image features and IN characteristics, design a new WMF which is more suitable for impulse noise

removal.

The rest of this paper is organized as follows. Section 2 shows some related works. Section 3 introduces the two-phase
noise detector. The new weighted mean filter is introduced in Section 4. The iterative denoising algorithm is presented in
Section 5. Simulation results are shown in Section 6 and Section 7 reaches a conclusion.

2. Related works

In this section, we review some studies related to our work that focus on the noise detectors and filters design for IN
removal. We first briefly review some noise detection schemes and then introduce some switching filters.

2.1. Noise detectors

One crucial problem for IN removal is the noise detection. Most existing IN detectors can be classified into two types, one
is based on the absolute deviation defined as,
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dðxi;jÞ ¼ jxi;j �Xi;jj ð2Þ
where Xi;j denotes the reference variable calculated from the local information. This absolute deviation is further compared
with an appropriate threshold T. Then a binary matrix f is chosen to record the compared results.
f ði; jÞ ¼
1; dðxi;jÞP T

0; dðxi;jÞ < T

�
ð3Þ
where the value ‘‘1’’ means that the current pixel xi;j is a noisy pixel, otherwise xi;j is a clean pixel.
Over the years, various local statistics are used as the reference variables. For example, Xi;j is replaced by the median or

weighted median in [29,32,37], normalized mean in [17], rank order in [1], center-weighted median in [12], median of the
absolute deviations from the median (MAD) in [13], directional weighted median in [16], weighted mean in [3], and median
of sorted quadrant median vector (SQMV) in [25].

The other one is based on the absolute differences between the center pixel and its neighbors. Denote xk;l be the neighbor
pixels of xi;j within a local window, then the absolute difference is defined by,
di;jðk; lÞ ¼ jxi;j � xk;lj ð4Þ
A typical representative of such detection scheme is the rank-ordered absolute difference (ROAD) [18],
ROADmðxi;jÞ ¼
Xm

n¼1

ds
i;jðnÞ ð5Þ
where ds
i;jðnÞ is the n-th smallest one in the di;jðk; lÞ defined in Eq. (4). The ROAD value, which may be used to compared with a

threshold, provides a proximity measurement between a pixel and its m most similar neighbors. Later, taking the logarithm
of the absolute difference, Dong et al. [15] proposed a statistic ROLD to improve the detection accuracy. Employing a refer-
ence image, Yu et al. [38] introduced a rank-ordered relative differences (RORD) which can preserve more image edges than
ROAD and ROLD. In [19], Ghanehar et al. used an exponential function to enlarge the absolute difference di;jðk; lÞ in (4), and
identify noise in a similar way with ROAD scheme.

2.2. Switching filters

Switching filters, which first utilize some detectors to identify noisy pixels then use some filters to remove the noisy pix-
els, are widely used to address the IN removal problems. One commonly used filter is the median-type filter. Chen et al. [11]
presented the adaptive center weighted median (ACWM) filter, in which the median value was used to verdict if the center
pixel is noisy, then the noisy pixels were suppressed by the center weighted median filter. Such strategy is further improved
by the new ACWM in [26] and the adaptive weighted mean filter (AWMF) in [41]. In [19], a contrast enhancement-based
filter (CEF) is presented, where the absolute differences are first enlarged by an exponential function and then summed
to identify noisy pixels. The noisy pixels were further filtered by the weighted median filter. Tsai et al. [34] employed ten
existing IN detectors to construct a two-level tree for noisy pixels detection, and the noisy pixels were restored by a med-
ian-type filter associated with the support vector regression method. Recent years, some mean filters were also incorporated
into the switching scheme for IN removal as they can capture more image detailed information. In [18], the statistic ROAD
was incorporated into the bilateral filter and a trilateral filter was designed for IN reduction. In [27], a rank-ordered arith-
metic mean filter was combined with a detector to remove IN. Lin et al. [25] presented a switching bilateral filter to suppress
IN. Recently, united with detectors, the non-local mean (NLM) filer [8] was also extended for IN removal due to its fantastic
denoising performance [37,22]. In [37], the weights of NLM were calculated on an initial denoised image, while these in [22]
were computed on the noisy image by diminishing the contributions of noisy pixels offered in the similarity measurement
calculation. Combining the noise detector into distance learning, Delon et al. [14] proposed a patch based method for IN
removal.

Though the techniques mentioned above could suppress most of the IN, the median-type filters cannot preserve the
image details well because they just use median-type values to replace the noisy pixels and do not take full use of all the
pixels in the local window. In contrast, the mean-type filters have shown much better denoising performance. However, they
still do not catch the characteristic of IN well and bring in some artifacts because those mean filters are originally developed
for GN removal. All these show that it is very critical to design better filters for IN reduction.
3. Two-phase noise detector

We present an efficient noise detector for detecting noisy pixels in this section. The proposed detector consists of two
parts, the first part is a noise candidates detection phase based on the ROD-ROAD scheme. The second part is an edge pixels
identification phase, which is used to identify edge pixels from the noise candidates. Fig. 1 shows the flow chart of the two-
phase detector.



Fig. 1. Details of the two-phase detection mechanism.
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3.1. Motivation of ROD-ROAD

The above two mentioned detection schemes in Section 2.1 both have their own deficiencies. For example, in the first
scheme, the reference variable Xi;j with noise information may cause extremely inaccurate detection results. The ROAD in
(5) and its variants, typical representative of the second detection scheme, will be failed in different image patterns. This will
be demonstrated in the following example.

From the definition in Eq. (5), one can see that each ROAD value is associated with a pixel. The basic assumption of ROAD
scheme is that larger ROAD values indicate noisy pixels, while smaller ones suggest clean pixels. The noisy pixels are
detected by comparing their ROAD values with a pre-defined threshold. Nevertheless, the ROAD values are easily affected
by different patterns in images as shown in Fig. 2. In this figure, two 5� 5 patches A and B containing different patterns
are extracted from the ‘lena’ image with 5% IN. Patch A is chosen from a smooth area, while patch B is selected from a
detailed region containing an edge. The noisy pixels in both patches are marked out by ellipses. Fig. 3 shows the correspond-
ing ROAD values for these two patches. The threshold T for the ROAD values of the two patches can be analyzed from these
three cases shown in Fig. 4. It can been seen that, because the ROAD values of noisy pixels in patch A are approach to those of
some clean pixels in patch B, there exists no such an appropriate threshold that can distinguish the noisy pixels and clean
pixels correctly in these two patches simultaneously. The ROD-ROAD is hence presented to address such concern.
Fig. 2. Two patches in lena image with 5% IN. (a1) noisy data of patch A with the noisy pixels marked by the ellipses, (a2) original data of patch A, (b1) noisy
data of patch B with the noisy pixel marked by the ellipse, (b2) original data of patch B.

Fig. 3. ROAD values of patch A and B in Fig. 2: (a) ROAD values of patch A, (b) ROAD values of patch B.
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3.2. ROD-ROAD scheme

The basic assumption of ROAD is it assumes that the ROAD values of noisy pixels always larger than those of clean ones.
However, this is not quite right because pixels in edges usually also have large ROAD values (see Figs. 2 and 3), leading to
inaccurate detection results. Based on the observation that, though the ROAD values will vary a lot for image patches with
different patterns (e.g., edges, textures, or smooth areas), the deviations of them do not have such large changes. This is
because pixels in one patch belong to the same pattern, then the effects of different patterns can be eliminated by calculating
the deviations of ROAD values for each patch, leading to more accurate detection results. Inspired by this, we present a novel
criterion called Rank-Ordered Differences of ROAD (ROD-ROAD) which enforces to detect the possible noisy pixels based on
the deviation of ROAD values. The ROD-ROAD scheme is described as: First, compute the ROAD value for each pixel in the
sliding window, and sort them in ascending order. Then each ROAD value is subtracted by its next adjacent element, and the
ROD-ROAD is obtained. Finally, a threshold T is utilized to distinguish the noise-like and clean-like pixels.

Let us still take patches A and B in Fig. 2 for example. Operations are described as, (a) Sort the ROAD values of two patches
in Fig. 3, patch A: 4;4;4;4;4;5;5;6;6;6;6;8;8;9;9;12;12;13;14;16;18;19;19;132;142; and patch B: 85;86;89;
94;95;96;98;102;106;109;110;112;119;123;124;125;131;132;136;143;144;147;156;158;204. (b) Calculate the differ-
ence between two adjacent elements, DA ¼ ð0;0;0;0;1;0;1;0;0;0;2;0;1;0;3;0;1;1;2;2;1;0;113;10Þ; and DB ¼ ð1;3;5;
1;1;2;4;4;3;1;2;7;4;1;1;6;1;4;7;1;3;9;2;46Þ. (c) Choose a threshold T (for example T ¼ 12), and find the first element
in DA and DB which is larger than this threshold. This ROD-ROAD value is generated by two adjacent ROAD values, and
the latter indicates a noisy pixel. Moreover, the ROAD values larger than this found one are also treated to be corresponding
to noisy pixels. For example, in patch A, 113 produced by 19 and 132 is the first value larger than the threshold, so 132
associates a noisy pixel (i.e., 146). Moreover, the next one 142 is also considered to be corresponding to a noisy pixel.
Therefore, in patch A, 146 and 171 are identified as noisy pixels, the rest are identified as clean-like ones. Similarly, in patch
B, using the same threshold, 125 is detected as noisy pixels, and the rest are clean-like ones. By using the ROD-ROAD scheme,
the detection results are more accurate.

3.3. Noise candidates detection

The ROD-ROAD scheme can detect noise, nevertheless, its detection performance is till fragile, since it is just a simple
improvement of ROAD. Actually, the differences between them is that the thresholds in the ROD-ROAD is adaptively chosen
(i.e., based on the deviation) while these in the ROAD is manually tuned. Due to the poor performance of ROAD, the ROD-
ROAD performance also needs to be improved. (This analysis is further verified by the experiments in subSection 6.3). To
address such concern, instead of directly using the ROD-ROAD scheme to detect noise, we combine it with the absolute
deviation scheme in Eq. (2) to detect IN.

As previously analyzed, the reference variable Xi;j in Eq. (2) greatly affects the detection results. A clean Xi;j leads to good
results, while a noisy Xi;j causes bad detection results. With this in mind, we first employ the ROD-ROAD scheme to select out
the clean-like pixels, then a more cleaner reference variable named MSP (median of selected pixels) is calculated for Eq. (2).
This leads to more accurate detection results. Let Sij be a set of pixel coordinates within a ð2N þ 1Þ � ð2N þ 1Þ sliding window,
centered at point ði; jÞ. The new noise candidates detection mechanism is described as,

1. Compute the ROAD map R via Eq. (5) [18] for the noisy image by using a 5� 5 window and m ¼ 8. For each ði; jÞ-th pixel
xi;j in the noisy image, initialize N ¼ 1.

2. Set a ð2N þ 1Þ � ð2N þ 1Þ sliding window centering at xi;j. Let Ri;j ¼ rk;ljðk; lÞ 2 Si;j
� �

be the set that contains the ROAD val-
ues corresponding to all the pixels in the window.

3. Sort Ri;j in ascending order, denoted as Rt
i;j= rt

1; r
t
2; . . . ; rt

ð2Nþ1Þ2

n o
, where rt

i is the sorted value of rk;l. Suppose that

Xl ¼ exijROADðexiÞ ¼ rt
i ; ð1 6 i 6 ð2N þ 1Þ2Þ

n o
are the corresponding pixel values.

4. ROD-ROAD scheme: calculate the absolute difference between the two adjacent elements in Rt
i;j, and a set

D ¼ dijdi ¼ rt
iþ1 � rt

i ; i ¼ 1;2; . . . ; ð2N þ 1Þ2 � 1
n o

containing all the difference values is obtained. Find a dk from D such

that dj 6 T for j < k, and dk > T . Then Rt;c
i;j ¼ rt

1; r
t
2; . . . ; rt

kþ1

� �
is the set that contains the kþ 1 minimum ROAD values,

where T is a threshold, chosen as the mean value of D. If cardðRt;c
i;j Þ < 5, then N ¼ N þ 1, and go to step 2.

5. These pixels with ROAD values corresponding to Rt;c
i;j are selected as clean-like pixels, denoted by

Xc
l ¼ exijROADðexiÞ ¼ rt

i ; r
t
i 2 Rt;c

i;j

n o
.

6. The weighted median value of Xc
l is calculated, xmsp ¼median w1}ex1;w2}ex2; . . . ;wkþ1}exkþ1f g, where w}ex means repeat

the pixel ex w times. For the ðk; lÞ-th pixel in the sliding window, the weight is defined as,
wðk; lÞ ¼
2; minðjk� ij; jl� jjÞ 6 1 ^ xk;l 2 Xc

l

1; minðjk� ij; jl� jjÞ ¼ 2 ^ xk;l 2 Xc
l

(
ð6Þ
7. Compute the absolute deviation between the pixel xi;j and xmsp, e.g., dref
i;j ¼ jxi;j � xmspj.



Fig. 4. Illustration of threshold chosen. T1 cannot correctly identify some clean pixels in patch B; T2 is not able to accurately detect the noisy pixels in patch
A; T3 cannot identify noisy pixels in both patches.
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A fuzzy criterion is proposed to describe the noisy pixels in the following. IN may be more correctly described by fuzzy
rules since it is stochastic. The membership function f 1 describes how likely a pixel to be corrupted by IN,
f 1ði; jÞ ¼

0; dref
i;j 6 Tmin

dref
i;j
�Tmin

Tmax�Tmin

� �a

; Tmin < dref
i;j < Tmax

1; dref
i;j P Tmax

8>>>><>>>>: ð7Þ
where the threshold Tmax is larger than Tmin. The parameter a is set as 0:2 in our method, and by our extension simulations,
any 0:1 < a < 0:5 can achieve satisfactory results.

3.4. Edge pixels identification

Although our proposed noise candidates detector can significantly reduce the probability of falsely detecting information
pixels as noisy ones, some stubborn pixels in edges are still easy to be wrongly judged. Hence, based on the first detection
results, this subsection presents an edge pixels detector to pick out edge pixels from noise candidates. Such an edge pixel
identification strategy is inspired by the observation that, for an edge pixel not corrupted by IN, the derivative of this pixel
on the edge should be small, while the derivative of a noisy pixel be large. It is worth noting that this process is just designed
for noisy pixel candidates. The following shows the steps:

1. Scanning the first detection result map f 1. If f 1ði; jÞ > 0:5, then set a ð2N þ 1Þ � ð2N þ 1Þ sliding window centered at xi;j in
the noisy image X.

2. Calculate these four sets: sh
i;j ¼ dh

njd
h
n ¼ jxi;j � xi;j�Nþnj

n o
; sv

i;j ¼ dv
n jd

v
n ¼ jxi;j � xi�Nþn;jj

� �
; sl

i;j ¼ dl
njd

l
k;l ¼ jxi;j � xi�Nþn;j�Nþnj

n o
,

and sr
i;j ¼ dr

njd
r
n ¼ jxi;j � xi�Nþn;jþN�nj

� �
, where 0 6 n 6 2N;n – N. These four sets contain the absolute differences between

the center pixel and its neighbors in four directions, namely, horizontal, vertical, left diagonal, and right diagonal,
representing four edges.

3. To further broaden the relative gap between noisy pixels and other pixels in the four directions. The absolute differences
in the four directions are weighted as,
Sh
i;j ¼ Dh

njD
h
n ¼

wh
n

Wh
N

� dh
n;w

h
n ¼ dh

n

� �b
( )

ð8Þ

Sv
i;j ¼ Dv

n jD
v
n ¼

wv
n

Wv
N

� dv
n ;w

v
n ¼ dv

n

	 
b� �
ð9Þ

Sl
i;j ¼ Dl

njD
ld
n ¼

wl
n

Wl
N

� dl
n;w

l
n ¼ dl

n

� �b
( )

ð10Þ

Sr
i;j ¼ Dr

njD
r
n ¼

wr
n

Wr
N

� dr
n;w

r
n ¼ dr

n

	 
b� �
ð11Þ

where Wh
N ¼

P2N
n¼0;n–Nwh

n;W
v
N ¼

P2N
n¼0;n–Nwv

n ;W
l
N ¼

P2N
n¼0;n–Nwl

n, and Wr
N ¼

P2N
n¼0;n–Nwr

n are normalization factors, and Dn

denotes the weighted absolute difference.
4. For each direction, sort the dk;l in ascending order, then m1 (m1 ¼ 2N þ 1 < 2N) minimum values are summed, defined as

minimum orientation difference (MOD), e.g., MODh
i;j¼

Pm1
i¼1Dh

ðiÞ;MODv
i;j¼

Pm1
i¼1Dv

ðiÞ;MODl
i;j¼

Pm1
i¼1Dl

ðiÞ, and MODr
i;j ¼

Pm1
i¼1Dr

ðiÞ,

in which Dh
ðiÞ;D

v
ðiÞ;D

l
ðiÞ, and Dr

ðiÞ are the ith smallest values in the sets Sh
i;j; S

v
i;j; S

l
i;j, and Sr

i;j, respectively.

In the following discussions, the subscript h;v ; l, and r are omitted without confusion. We further denote dðnÞ;DðnÞ as the n-
th smallest elements in si;j and Si;j, respectively. Note that the target of adding weights for each dn is to broaden the relative

gap of two pixels, therefore, it is expected that DðnÞ
Dðnþ1Þ

<
dðnÞ

dðnþ1Þ
, which leads to b > 0. On the other hand, the intuitive way to set
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the weights is based on their contributions to the summation; that is wn ¼ dn and Dn ¼ ðdnÞ2P
dn

. However, due to the presence of

IN, the minimum value dð1Þ in Si;j may be far less than the maximum value dð2NÞ; therefore, the minimum weight wð1Þ ¼
dð1ÞP

n
dn

may close to 0, which is not required. To avoid such problem, we expect that the relative difference between DðnÞ and Dðnþ1Þ

with weight b is not smaller than the relative difference between ðdðnÞÞ2P
n

dn
and ðdðnþ1ÞÞ2P

n
dn

. That is DðnÞ
Dðnþ1Þ

P ðdðnÞÞ2P
n

dðnÞ
=
ðdðnþ1ÞÞ2P

n
dðnÞ

, which leading

to b � 1.
According to the above discussion, we observe that 0 < b � 1 is suitable for (8)–(11). To further determine the b, we

implement the proposed Algorithm 1 (see Section 5) to process the noisy images (the six tested images in Fig. 5 with 40%
IN), and the average PSNR value of the denoised results is plotted as a function of b. The results are shown in Fig. 6. From
this figure, one can see that the average PSNR value first increases then decreases along with b increasing, and the largest
value reaches when b ¼ 0:2. Therefore, we choose b ¼ 0:2 for our method. Note that though b ¼ 0:2 achieves the best result,
the gap between the largest PSNR value and the smallest one is so small, which indicates that any b 2 ð0;1� can achieve
satisfactory results.

Finally, we define the minimum edge pixels difference as MEPDi;j ¼min MODh
i;j;MODv

i;j;MODl
i;j;MODr

i;j

n o
. In the following,

we will discuss why this local statistic can be used to pick out the edge pixels from noise candidates. The pixel xi;j in the noise
candidates can be analyzed according to the following four cases,

I. When xi;j is an edge pixel, and suppose its neighbors are all clean. Though for some directions, the MODi;j may be large,
the intensities of neighbor pixels in the same edge are very close to that of the center pixel, so MEPDi;j value for this
current pixel is small.

II. When xi;j is noise, and suppose its neighbors are all clean. Because MODi;j in the four direction indexes are large, then
MEPDi;j is large.

III. When xi;j is an edge pixel with some neighbor pixels corrupted by IN. Because in the same edge, some neighbors are
not contaminated by noise, MEPDi;j is still small.

IV. When xi;j is noise, and suppose some of its neighbors are corrupted by IN too, clearly, MEPDi;j is large.

It is worth noting that, in case IV, the MEPD may be small if one or more pixels in the same edge are corrupted by the
similar noise values with those of the center pixel. However, such case may be happened with a very small probability since
the RVIN can choose any value in [0,255]. In general, for a grayscale image, it is not noticeable if the absolute difference
Fig. 5. Test images. From left to right: lena, bridge, boat, pepper, house, and pentagon.

Fig. 6. The mean PSNR values associated with different b values.
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between a pixel value and that of its neighbors is less than 8 [6,15]. More specifically, the probability for one pixel corrupted
with the similar noise value of the center pixel is 16

2562 < 0:05, which is a small probability event and can be ignored. According
to the definition of MEPD, it is obvious that we take full advantage of the information in the four directions no matter they
are corrupted or not. These directions can be treated as potential edge directions in images. The statistic MEPD is still effi-
cient when some of the neighbor pixels are corrupted.

From the above analysis, it can be find that the clean edge pixels have small MEPD values while the noisy pixels have large
ones. Therefore, by employing a threshold T, the noise candidates of the first detection results are reclassified, and the edge
pixels are identified. Hence, the membership function of these noise candidates is updated as,
f 2ði; jÞ ¼
f 1ði; jÞ; MEPDi;j > T

0; MEPDi;j 6 T

�
ð12Þ
To calculate the statistic MEPD, it is necessary to determine the values of window size N and threshold T. Here, we choose
N ¼ 2, which means a 5� 5 window, and T ¼ 5 for simplicity.
4. New weighted mean filter

After detection, the next problem is how to choose an appropriate filter to remove these detected noisy pixels. Instead of
using the existing median or mean filters [26,37], in this section we design a more robust weighted mean filter (WMF) for
image denoising. The weight in the proposed WMF contains three components which take into account both the image fea-
tures and IN characteristics. Hence it is more suitable for IN removal.

Let Si;j be a set of pixel coordinates within a ð2N þ 1Þ � ð2N þ 1Þ sliding window, centered at the ði; jÞ-th pixel. Suppose xi;j

is the ði; jÞ-th pixel in the noisy image, and bxi;j is the output of the filter, then
bxi;j ¼
P

k;l2Si;j
Wd

k;lW
c
k;lW

s
k;lxk;lP

k;l2Si;j
Wd

k;lW
c
k;lW

s
k;l

ð13Þ
where Wd
k;l is the distance weight inverse to the spatial distance between the neighbor pixel (i.e., xk;l) and the center one (i.e.,

xi;j). It is expected that the larger the distance between xk;l and xi;j is, the smaller the distance weight should be, and vice

versa. Here, Wd
k;l is simply defined as the inverse function of the spatial distance,
Wd
k;l ¼

1

k� ið Þ2 þ l� jð Þ2
ð14Þ
Wc
k;l is called clean-like weight, which means that if a pixel is more likely to be a clean pixel, then it should be matched with a

higher weight. On the contrast, if a pixel has a larger probability to be noise, the clean-like weight for it should be lower.
Extremely, the noise free pixel has the largest weight, and the completely noisy pixel (the pixel with f 2 value equals to 1)
has no weight. Therefore, the clean-like weight is defined as,
Wc
k;l ¼ ejf 2ðk;lÞ�1j � 1 ð15Þ
and Ws
k;l is the median-similarity weight, which indicates that if the luminance intensity of xk;l is closer to the median value

of the relative-clean pixels (pixels with membership function f 2 < 1), the median-similarity weight for xk;j should be higher.
The mathematical formula is defined as follows,
Ws
k;l ¼ e

�
jxk;l�x�m j

dmax

� �2

ð16Þ
in which xk;lððk; lÞ 2 Si;j=ði; jÞÞ is the neighbor pixel of xi;j in the sliding window, x�m is the median value of the neighbor pixels

excluded the noisy ones, i.e., x�m ¼ median X�i;j
n o

. X�i;j denotes the set containing the relative clean pixels in the window,
X�i;j ¼ xk;ljðk; lÞ 2 Si;j; 0 6 f 2ðk; lÞ < 1
� �

ð17Þ
and dmax ¼max j xk;l � x�m j jðk; lÞ 2 Si;j=ði; jÞ
� �

is the maximum difference.
The idea for designing such three components for the weight is quite simple. Firstly, it is well known that, in natural

images, the closer the distance of two pixels is, the closer the relationship will be. Hence setting larger weights for these pix-
els that near to the current pixel is reasonable. Secondly, it is sensible just using these information pixels to filtering the noisy
ones. Therefore, in the proposed weighted mean filter, the clean-like weight Wc is inversely proportional to the membership
function f 2. Finally, since median value is a good estimator for the IN, it is advisable to design large weights for these pixels
whose luminance intensities are approach to the median value of the relative-clean ones.
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5. Proposed denoising algorithm

Combining the two phase noise detector described in Section 3 with the proposed weighted mean filter in Section 4, we
summarize our denoising method in Algorithm 1.

Algorithm 1. The proposed denoising algorithm for IN removal

Input: The noisy image X, with size of K1 � K2; Maximum window size Nmax; Thresholds Tmin and Tmax in (7).
1: Iterative on k until the stop criterion is met.
2: Compute the noise detection map f 2 for image X based on the two-phase detection mechanism.

Outer loop: for i ¼ 1; � � �K1

Inner loop: for j ¼ 1; � � �K2

1. Initialize the window size N ¼ 1.
2. Locate a sliding window of size ð2N þ 1Þ � ð2N þ 1Þ centered at xi;j.
3. If jX�i;jj < 3 (X�i;j is defined in (17), j � j denotes the cardinality operator), and N < Nmax, then N  N þ 1; Return to step

(2).
4. Calculate bxi;j using (13).
5. The estimator of xi;j is computed as, yi;j ¼ bxi;j � f 2ði; jÞ þ xi;j � ð1� f 2ði; jÞÞ.
6. If k > kmax, stop; Else X  Y , the next iteration.
Output: The restored image Y
Suppose X̂ is the estimation of the noisy image X by the weighted mean filter combined with the two-phase noise detec-
tor. We then add back part of the noisy image into the estimation to form the recovered image, which can avoid over filtering
and preserve more image details. Hence, the final recovered image is,
Y ¼ X̂ 	 f 2 þ X 	 ð1� f 2Þ ð18Þ
where f 2 is the weight matrix generated by the two-phase detector, and 	 denotes the Hadamard product.
In the proposed denoising algorithm, we adopt the iterative way that many methods used to improve the quality of out-

puts. That is, the input of current iteration is the output of the last iteration.

6. Experimental results

In this section, to assess the noise removal capability of the proposed algorithm, we compare the noise detection results
and denoising results with several existing methods. Many standard test images are first corrupted by RVIN with various
noise densities. Then they are filtered by all the tested algorithms. Fig. 5 shows some examples of tested images.

6.1. Implementations and parameters setting

We implement the proposed algorithm based on Algorithm 1 for RVIN removal. Before implementation, three parameters
should be predefined: two thresholds Tmin and Tmax, and the maximum window size Nmax.

We adopt the experimental methods to set values for the two thresholds. Fig. 8 shows the denoised results of ‘lena’ image
with 40% IN in PSNR for different thresholds. As shown in Fig. 8, the two thresholds chosen as 3 6 Tmin 6 12 and
35 6 Tmax 6 75 can generate satisfied restoration results, which indicates that the proposed method is very robust to these
two thresholds. In this paper, we set Tmin ¼ 3 and Tmax ¼ 55 for all the tested images.

For the maximum window size, Nmax should not to be set too small; otherwise, the number of clean pixels in the sliding
window will be not enough to reconstruct the centering noisy pixel. On the other hand, Nmax should be not too large, so as to
preserve the local information of images. In our simulations, Nmax is set as 3, which indicates a 7� 7 window.

The stopping criterion is sill an elusive problem. We choose to terminate our method when the residual error of two itera-
tions is smaller than a threshold,
kYpre � YcurkF

kYprekF
< 0:008 ð19Þ
where Ypre and Ycur represent the denoised images of previous and current iterations, respectively. k � kF denotes the
Frobenius norm. Our method is also terminated when the maximum iteration number is reached. The maximum iterations
for 40%, 50%, and 60% noise densities are 3, 3, and 6, respectively.

6.2. Demonstration of edge pixels identification

To demonstrate that our two phase detector has the capability of identifying edge pixels in the noisy environment, Fig. 7
shows the detection results of ‘lena’ and ‘house’ images corrupted by 20% RVIN, where (a) mean the first detection mapping



Fig. 7. Noise candidates detection results: (a) noise candidates after the first detection, (b) noise candidates after the second detection, (c) edge pixels
identified by the second detection (the difference between (a) and (b)). Zoom into pdf file for a detailed view.
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matrices (f 1), (b) denote the second detection results (mapping matrices f 2), and (c) display the difference between these
two mapping matrices. In (a) and (b), white dots mean corresponding pixels in the noisy image are detected as noise, while
black dots denote corresponding pixels are recognized as clean ones. In (c), bright dots indicate corresponding pixels are
identified as edges based on the first detection results.

From Fig. 7(a), it can be easily observed that in the first detection results, there are still many edge pixels which are
false detected as noise. On the contrast, fewer edge pixels exist in the Fig. 7(b) though there are still some. This is because
that the values of RVIN pixels always do not have a large difference from those of their neighbors, it is impossible for a
noise detector to detect all the noisy pixels accurately without any false detection. Fig. 7(c) contains most of the edges but
few noisy pixels, which means that, after the second detection, most of the edge pixels are identified from noise
candidates.
6.3. Comparison of noise detection

For IN removal, the capability of noise detector affects the recovered results significantly. In this subsection, we compare
our detection method with several state-of-the-art RVIN detection methods, such as ACWM [11], Luo-iterative [29], CEF [19],
ASWM [3], DWM [16], SD-OOD [5], ROR-NLM1 [37], and ROLD-EPR2 [15].

One may realize that it is meaningless to compare the detection capability of our method with other methods, since our
proposed method detects the noise in a fuzzy rule which none of the above mentioned methods adopted. For a fair compar-
ison, we set the Tmin equal to Tmax in (7). Note that when Tmin ¼ Tmax, the proposed fuzzy detection method returns to the
explicit rule which can be compared with the above mentioned detection methods. In our simulations, we apply our detec-
tion method iteratively to improve the detection accuracy. By our extension experiments, two iterations is enough. We also
borrow the idea from [16] that the thresholds decrease with iterations to keep a good tradeoff between the undetected and
wrongly detected pixels. Therefore, the values for the two thresholds in the first iteration is chosen as 13, and 6 in the second
iteration. Also for a fair comparison, we implement others’ methods with the optimal parameters and iterations as the origi-
nal papers suggested to obtain the best detection results. To verify the superiority of the first detection phase (the ROD-ROAD
combined with the absolute deviation scheme) to the ROD-ROAD scheme. We choose to use the single ROD-ROAD scheme to
detect the noisy pixels and named it as ‘‘Proposed 0’’.
1 The matlab codes are provided by one of the authors, Dr. Bo Xiong.
2 The source codes are provided by one of the authors, Prof. Yiqiu Dong.



Fig. 8. Restoration results of ‘lena’ image with 40% random value impulse noise generated by different parameter values.

Table 1
Comparison of noise detection results for ‘lena’ image corrupted by RVIN.

Method 40% 50% 60%

Miss False-hit Total Miss False-hit Total Miss False-hit Total

ACWM [11] 14,249 1928 16,177 20,596 3602 24,198 31,165 6668 37,833
Luo’s [29] 14,365 1713 16,078 20,236 2135 22,371 33,374 2886 36,260
CEF [19] 14,727 6141 20,868 17,490 7745 25,235 21,314 8657 29,971
ASWM [3] 7381 11,042 18,423 10,614 12,050 22,664 19,577 16,845 36,422
DWM [16] 11,600 7937 19,537 15,035 8652 23,687 15,373 14,215 29,588
SD-OOD [5] 13,299 10,326 23,625 11,741 15,588 27,329 16,993 18,243 35,236
ROR-NLM [37] 12,443 3056 15,499 15,778 3655 19,433 21,601 5917 27,518
ROLD-EPR [15] 13,987 7471 21,458 16,331 7875 24,206 17,245 9223 26,468
Proposed 0a 11,693 9303 20,996 14,211 9661 23,872 19,843 10,117 29,960
Proposed 1a 8447 8389 16,836 9115 11,302 20,417 12,133 11,918 24,051
Proposed 2a 10,138 5203 15,341 11,584 6946 18,530 15,451 7455 22,906

a ‘‘Proposed 0’’ denotes the the detect results are produced by the single ROD-ROAD scheme, ‘‘Proposed 1’’ means the results are detected by our method
just using the proposed first detection phase (i.e., the ROD-ROAD combined with the absolute deviation scheme), while ‘‘Proposed 2’’ denotes the results are
produced by both the two detection phases.

Table 2
Comparison of restoration results in PSNR for images corrupted by RVIN.

Method ACWM
[11]

Luo’s
[29]

CEF
[19]

ASWM
[3]

DWM
[16]

Trilateral
[18]

SD-OOD
[5]

SBF
[25]

ROR-NLM
[37]

ROLD-EPR
[15]

Proposed

Lena
40% 29.5842 30.7707 32.1148 32.2911 32.3415 32.0734 29.5985 30.0405 32.9657 32.7150 33.7277
50% 24.6324 27.1577 29.7564 29.2315 29.3169 30.2398 27.8896 27.1795 30.0189 31.1240 31.7281
60% 20.3994 22.6151 25.9032 25.0360 25.4869 27.4184 26.5063 23.4089 25.5969 28.9796 29.6646

Bridge
40% 23.5194 23.5930 23.8539 23.9678 24.0687 23.7333 22.6622 23.0450 24.1837 24.5132 24.7997
50% 21.4062 21.6216 22.7932 22.5755 22.5717 23.0881 21.7140 21.9910 22.8426 23.5096 23.7190
60% 19.1227 19.1737 21.4059 21.1075 21.1289 21.8844 21.1949 20.4935 21.1945 22.5179 22.7028

Boat
40% 26.7405 26.8804 27.0804 27.2710 27.0605 26.7729 24.6639 25.9143 27.5882 27.0475 27.6631
50% 24.5015 24.8246 25.6531 25.5612 25.4535 25.7874 23.8144 24.6599 25.8695 25.9592 26.3533
60% 21.4506 21.6170 24.1626 23.7997 23.8641 24.4383 23.3654 22.8370 24.1741 25.0065 25.1785

Pepper
40% 28.8938 29.5329 30.4169 30.2760 30.6171 30.1142 29.1236 29.1679 31.2425 31.1144 31.5458
50% 25.4002 26.7129 28.7790 28.3882 28.5211 29.3005 27.5441 27.0299 28.9384 29.9015 30.3631
60% 21.5320 23.5268 26.2016 25.3548 25.5886 27.1517 26.0899 24.0161 25.8514 28.1943 28.7147

House
40% 31.9587 33.4320 35.2325 36.0844 36.2694 35.3648 33.9365 33.6728 36.4996 36.5677 37.3145
50% 27.2731 29.7165 33.3614 34.6239 33.2377 33.1997 31.2151 29.9722 33.3515 34.4370 35.3826
60% 22.4235 24.2715 28.2534 28.0607 28.5279 29.8992 29.0579 25.7338 28.7264 32.0245 32.8893

Pentagon
40% 27.0890 26.9968 27.1645 27.2907 27.2324 26.6126 25.7515 26.3351 27.6785 27.5863 27.8970
50% 25.4749 25.3330 26.2436 26.1936 26.0746 25.9229 25.0935 25.6544 26.5610 26.6542 26.9565
60% 23.4055 22.7786 25.1150 24.9757 25.0295 24.8232 24.6009 24.6261 25.3569 25.6124 25.9037
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Table 3
Comparison of restoration results in SSIM and FSIM for images corrupted by RVIN.

Method Lena Bridge Boat Pepper House Pentagon

40% 50% 60% 40% 50% 60% 40% 50% 60% 40% 50% 60% 40% 50% 60% 40% 50% 60%

SSIM
ACWM [11] 0.8771 0.7648 0.5835 0.7270 0.6262 0.4824 0.8089 0.7062 0.5691 0.8126 0.7069 0.5484 0.9098 0.7975 0.5938 0.7837 0.7057 0.5898
Luo’s [29] 0.8807 0.7957 0.0.6302 0.7388 0.6388 0.5005 0.8025 0.7189 0.5675 0.8137 0.7227 0.6113 0.9095 0.8359 0.6637 0.7829 0.7047 0.5812
CEF [19] 0.9162 0.8850 0.7634 0.7162 0.6419 0.5616 0.8223 0.7658 0.6849 0.8497 0.8101 0.7304 0.9380 0.9209 0.7991 0.7801 0.7202 0.6572
ASWM [3] 0.9319 0.8823 0.7913 0.6953 0.5830 0.4936 0.8056 0.7258 0.6515 0.8134 0.7709 0.7068 0.9676 0.9411 0.8493 0.7640 0.6852 0.6178
DWM [16] 0.9280 0.8905 0.8063 0.6961 0.5851 0.4981 0.8186 0.7334 0.6574 0.8505 0.7819 0.7126 0.9537 0.9450 0.8761 0.7711 0.6868 0.6227
Trilateral [18] 0.9033 0.8655 0.8059 0.6290 0.5871 0.4915 0.7365 0.7208 0.6348 0.8099 0.7832 0.7150 0.9345 0.9036 0.8565 0.6825 0.6459 0.5697
SD-OOD [5] 0.8822 0.8404 0.7425 0.6058 0.5447 0.4877 0.7289 0.6741 0.6283 0.8432 0.7644 0.7138 0.9188 0.8873 0.7798 0.6880 0.6480 0.5957
SBF [25] 0.8817 0.8119 0.7046 0.5903 0.5320 0.4504 0.7310 0.6754 0.5983 0.7887 0.7347 0.6536 0.9199 0.8594 0.7557 0.6813 0.6416 0.5830
ROR-NLM [37] 0.9359 0.8993 0.8102 0.7254 0.6459 0.5462 0.8328 0.7806 0.7083 0.8641 0.8202 0.7452 0.9555 0.9327 0.8725 0.7962 0.7354 0.6725
ROLD-EPR [15] 0.9292 0.9015 0.8529 0.7563 0.6873 0.6083 0.8297 0.7807 0.7213 0.8671 0.8271 0.7764 0.9586 0.9359 0.8985 0.7940 0.7435 0.6762
Proposed 0.9453 0.9189 0.8785 0.7689 0.7050 0.6301 0.8353 0.7913 0.7323 0.8605 0.8293 0.7887 0.9661 0.9467 0.9168 0.8031 0.7522 0.6916

FSIM
ACWM [11] 0.9694 0.9167 0.9029 0.9543 0.9004 0.8898 0.9673 0.9107 0.9050 0.9499 0.9053 0.8648 0.9330 0.8873 0.8379 0.9506 0.9240 0.8821
Luo’s [29] 0.9790 0.9542 0.8882 0.9654 0.9329 0.8664 0.9814 0.9552 0.8715 0.9469 0.9252 0.8657 0.9386 0.9095 0.8545 0.9451 0.9318 0.8924
CEF [19] 0.9818 0.9674 0.9224 0.9710 0.9545 0.9150 0.9848 0.9738 0.9204 0.9451 0.9273 0.8936 0.9353 0.9059 0.8723 0.9493 0.9285 0.9034
ASWM [3] 0.9815 0.9560 0.9029 0.9629 0.9374 0.8898 0.9860 0.9649 0.9051 0.9485 0.9184 0.8648 0.9337 0.8874 0.8379 0.9478 0.9197 0.8821
DWM [16] 0.9813 0.9598 0.9103 0.9702 0.9438 0.8965 0.9856 0.9701 0.9162 0.9500 0.9158 0.8702 0.9286 0.8874 0.8423 0.9449 0.9184 0.8824
Trilateral [18] 0.9710 0.9528 0.9194 0.9689 0.9527 0.9151 0.9692 0.9492 0.9106 0.9436 0.9206 0.8747 0.9253 0.8989 0.8580 0.9318 0.9093 0.8614
SD-OOD [5] 0.9617 0.9500 0.9288 0.9619 0.9479 0.9241 0.9691 0.9559 0.8968 0.9011 0.8859 0.8697 0.8747 0.8561 0.8372 0.9073 0.8951 0.8765
SBF [25] 0.9559 0.9193 0.8608 0.9481 0.9111 0.8522 0.9551 0.9103 0.8310 0.9164 0.8793 0.8239 0.8942 0.8583 0.8107 0.9174 0.8949 0.8564
ROR-NLM [37] 0.9842 0.9678 0.9229 0.9736 0.9530 0.9067 0.9876 0.9745 0.9308 0.9532 0.9312 0.8885 0.9364 0.8983 0.8556 0.9504 0.9294 0.8986
ROLD-EPR [15] 0.9824 0.9697 0.9501 0.9756 0.9640 0.9397 0.9872 0.9760 0.9536 0.9525 0.9357 0.9084 0.9436 0.9211 0.8938 0.9526 0.9345 0.9091
Proposed 0.9847 0.9759 0.9574 0.9769 0.9661 0.9487 0.9887 0.9814 0.9655 0.9496 0.9377 0.9122 0.9446 0.9209 0.8959 0.9538 0.9371 0.9115
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Table 1 lists the detection comparison results for the ‘lena’ image contaminated by RVIN with different densities. The
detection results of each method consist of three parts, namely, the number of undetected noisy pixels (‘‘miss’’ term), the
false detected pixels (‘‘false-hit’’ term), and the total number. A good noise detector should reduce both the number of ‘‘miss’’
and ‘‘false-hit’’ pixels. The two lowest ‘‘total’’ numbers are marked in bold for an intuitive comparison.

From Table 1, one can see that the ‘‘Proposed 0’’ generates more ‘‘total’’ numbers than ‘‘proposed 1’’, which indicates that
the detection performance is indeed improved by jointing the ROD-ROAD into the absolute deviation scheme than the single
ROD-ROAD scheme. Besides, the miss pixels of proposed 1 is less than those of proposed 2, suggesting that some noisy pixels
are also identified as edges by the edge pixels identification stage. This is because that both the noisy and edge pixels exhibit
the similar properties, and our second detection phase is conducted in the noisy environment, hence it is inevitable to false
identify noisy pixels as edge pixels. However, the ‘‘total’’ numbers generated by proposed 2 are lower than those of proposed
1, which indicates the second detection phase indeed can identify the edge pixels from noise candidates. Though with the
cost of missing some noisy pixels, the second edge identification phase is necessary and meaningful.

Though some methods such as ACWM, Luo’s, and ROR-NLM generate less ‘‘false-hit’’ than ours, there are too many missed
noisy pixels which will lead to the presence of noticeable noisy patches. Actually, for the ‘‘total’’ term, the proposed noise
detection method has the lowest ‘‘total’’ numbers among all the methods for various noise densities. Comparing with other
methods, our method can identify more noisy pixels with fewer mistakes. In addition, one can also observed that, when the
noise density is higher, the superiority of our method becomes more obvious. This means that our method is very robust and
still efficient when the noise density becomes high.

6.4. Comparison of image restoration

The denoising performance of our proposed method is accessed by comparing with those of other well known IN removal
methods, such as ACWM [11], Luo-iterative [29], CEF [19], ASWM [3], DWM [16], Trilateral [18], SD-OOD [5], SBF [25], ROR-
NLM [37], and ROLD-EPR [15]. There are lots of models for quantitative image quality assessment, such as the peak signal to
noise ratio (PSNR), structural similarity (SSIM) [36], feature similarity (FSIM) [40], and visual saliency-based index (VSI) [39].
Fig. 9. Results of different algorithms in restoring the test ‘lena’ image corrupted by RVIN with 40% noise density. (a) Noisy image, (b) ACWM, (c) Luo’s
method, (d) CEF, (e) ASWM, (f) DWM, (g) ROAD-Trilateral, (h) SD-OOD, (i) SBF, (j) ROR-NLM, (k) ROLD-EPR, (l) Proposed Method. Zoom into pdf file for a
detailed view.
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Consider that VSI is mainly designed for color image assessment and our experiments are conducted on grayscale images,
hence we choose PSNR, SSIM, and FSIM to measure the restored results. Generally speaking, the larger PSNR, SSIM, and
FSIM values are, the better quality of the restored image will be.

For a fair comparison, all the other methods are set with the optimal parameters and the optimal iteration numbers sug-
gested by the original papers to achieve the best denoising performance, e.g., four iterations, ½d0; d1; d2; d3� ¼ ½40;25;10;5�,
and s ¼ 0:5 for ACWM. Nd ¼ 3; Td ¼ 14, and Kd ¼ 3 for Luo’ method. For CEF, the initial K is set as 5, and for each iteration
K ¼ K þ t, where t ¼ 10;15;20;25;30. d ¼ 0:1; e ¼ 0:01, and iteration number changes form 3 to 10 based on the noise den-
sity for ASWM. T0 ¼ 510, iterations = 11 to 18 for DWM. rS ¼ 0:5;rR ¼ 100;rI ¼ 45, and rJ ¼ 0 for Trilateral filter. A 5� 5
window, T1 ¼ 0:48, and T2 ¼ 0:24 for SD-OOD. rR ¼ 120; Tk1 ¼ 25,and Tk2 ¼ 5 for SBF. For ROR-NLM, ½Tc

1; T
c
2; T

c
3� ¼

½30;40;50�; ½T f
1 ; T

f
2 ; T

f
3 ; T

f
4� ¼ ½7;10;20;25�, and the iteration number = 3, 4, and 9 for 40%, 50%, and 60% noise density, respec-

tively. The window size is set as 5� 5;m ¼ 12, and the initial threshold Te ¼ 5:4 for ROLD-EPR.
Tables 2 and 3 list the PSNR, SSIM and FSIM values from the methods for all the tested images corrupted by RVIN with

noise densities from 40% to 60%, respectively. In both tables, the best values are marked for easy comparisons. From Table 2,
it is obvious that for all the tested images and noise densities, our proposed method produces the best results in terms of
PSNR. For SSIM and FSIM measurements, as shown in Table 3, our method also generates the best results for almost all
the tested images except for the ‘pepper’ image with 40% noise and ‘house’ image with 50% noise, for which the SSIM or
FSIM scores of our method are slightly less than the best ones.

For subjective comparisons, we show the deoised results of ‘lena’ and ‘pepper’ images restored by these tested methods.
Fig. 9 shows the output results of ‘lena’ image corrupted by 40% IN. In order to give a better visual impression, only enlarged
portion of the restored images are displayed. To further compare the ability of removing high density noise, the restoration
results of ‘pepper’ image contaminated by 60% IN are shown in Fig. 10. From these two figures, one can find that, other meth-
ods except for the ROLD-EPR, not only cannot suppress IN thoroughly, but also bring many artifacts and damage the image
details. Although some methods such as Trilateral filter and ROR-NLM can remove most of the noise when noise density is
low (i.e., 40%), they are severely failed in the images corrupted by heavy density noise (i.e., 60%). The results produced by
ROLD-EPR verify that this method indeed has a good capability of preserving the image edges, however, there still exist some
Fig. 10. Results of different algorithms in restoring the test ‘pepper’ image corrupted by RVIN with 60% noise density. (a) Noisy image, (b) ACWM, (c) Luo’s
method, (d) CEF, (e) ASWM, (f) DWM, (g) ROAD-Trilateral, (h) SD-OOD, (i) SBF, (j) ROR-NLM, (k) ROLD-EPR, (l) Proposed Method. Zoom into pdf file for a
detailed view.
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noticeable noise unremoved due to the imperfect detector it used. In contrast, the results generated by our method have very
good visual qualities. Even though the noise density is 60%, our method still can remove almost all the IN, and preserve most
of the image details.
7. Conclusion

In this paper, we present a new algorithm for removing IN. In summary, a new statistical mechanism ROD-ROAD as well
as a fuzzy rule is introduced for describing how likely a pixel to be noisy. Besides, a novel statistic MEPD is proposed to pick
out the edge pixels from the noisy image based on the first detection results, which improves the detection accuracy. Finally,
a weighted mean filter which takes into account both the information of image features and IN characteristics is designed for
IN reduction.

The proposed method uses no complexity optimization algorithm, hence is well-understood and easy to implement. In
comparison with previous researches, experimental results demonstrate that our method has a very good capability of sup-
pressing RVIN, even though the images are corrupted by high density noise. With respect to both the visual effects and
quantitative measure results, our proposed method outperforms all the compared state-of-the-art denoising methods.
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